Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.

نویسندگان

  • Gloria P Mazzara
  • Robert P Velthuizen
  • James L Pearlman
  • Harvey M Greenberg
  • Henry Wagner
چکیده

PURPOSE To assess the effectiveness of two automated magnetic resonance imaging (MRI) segmentation methods in determining the gross tumor volume (GTV) of brain tumors for use in radiation therapy treatment planning. METHODS AND MATERIALS Two automated MRI tumor segmentation methods (supervised k-nearest neighbors [kNN] and automatic knowledge-guided [KG]) were evaluated for their potential as "cyber colleagues." This required an initial determination of the accuracy and variability of radiation oncologists engaged in the manual definition of the GTV in MRI registered with computed tomography images for 11 glioma patients. Three sets of contours were defined for each of these patients by three radiation oncologists. These outlines were compared directly to establish inter- and intraoperator variability among the radiation oncologists. A novel, probabilistic measurement of accuracy was introduced to compare the level of agreement among the automated MRI segmentations. The accuracy was determined by comparing the volumes obtained by the automated segmentation methods with the weighted average volumes prepared by the radiation oncologists. RESULTS Intra- and inter-operator variability in outlining was found to be an average of 20% +/- 15% and 28% +/- 12%, respectively. Lowest intraoperator variability was found for the physician who spent the most time producing the contours. The average accuracy of the kNN segmentation method was 56% +/- 6% for all 11 cases, whereas that of the KG method was 52% +/- 7% for 7 of the 11 cases when compared with the physician contours. For the areas of the contours where the oncologists were in substantial agreement (i.e., the center of the tumor volume), the accuracy of kNN and KG was 75% and 72%, respectively. The automated segmentation methods were found to be least accurate in outlining at the edges of the tumor volume. CONCLUSIONS The kNN method was able to segment all cases, whereas the KG method was limited to enhancing tumors and gliomas with clear enhancing edges and no cystic formation. Both methods undersegment the tumor volume when compared with the radiation oncologists and performed within the variability of the contouring performed by experienced radiation oncologists based on the same data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

Volume Target Delineation for Brain Tumor in Mri Images Using Active Contour Segmentation Method

Radiotherapy is a tumor treatment process using high dose of radiation. Hence, it is essential that radiotherapy is carefully planned with a Treatment Planning System (TPS). The first step in TPS is delineation that aims to get a better picture of the tumor and the target volume value. This research investigated volume target delineation for brain tumor against the MRI image of the head in axia...

متن کامل

Integrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors

Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

Contribution of 68Ga-PSMA PET/CT to targeting volume delineation of prostate cancer treated with conformal radiation therapy: Which SUV threshold is appropriate?

Introduction: Prostate-specific membrane antigen (PSMA) has been demonstrated as a promising tool for specific imaging of prostate cancer (PCa) via positron emission tomography-computed tomography (PET/CT) scanning. Radiation treatment planning (RTP) based on 68Ga-PSMA PET/CT scanning can also lead to some decision modifications.  The specific goal o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of radiation oncology, biology, physics

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 2004